
Protecting a Moving Target:
Addressing Web Application Concept Drift
The 12th International Symposium on Recent Advances in Intrusion

Detection 2009

Federico Maggi, William Robertson, Christopher Krügel, Giovanni Vigna

Politecnico di Milano, Univeristy of California Santa Barbara

September 23, 2009

Adapting to changes of the protected web application.

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32
/comment/<par1>/<par1-val>
/login/<par1>/<par1-val>/<par2>/<par2-val>
...
/<component1>/<par1>/<par1-val>/<par2>/<par2-val>
/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32

/comment/<par1>/<par1-val>
/login/<par1>/<par1-val>/<par2>/<par2-val>
...
/<component1>/<par1>/<par1-val>/<par2>/<par2-val>
/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32
/comment/<par1>/<par1-val>

/login/<par1>/<par1-val>/<par2>/<par2-val>
...
/<component1>/<par1>/<par1-val>/<par2>/<par2-val>
/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32
/comment/<par1>/<par1-val>
/login/<par1>/<par1-val>/<par2>/<par2-val>

...
/<component1>/<par1>/<par1-val>/<par2>/<par2-val>
/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32
/comment/<par1>/<par1-val>
/login/<par1>/<par1-val>/<par2>/<par2-val>
...

/<component1>/<par1>/<par1-val>/<par2>/<par2-val>
/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32
/comment/<par1>/<par1-val>
/login/<par1>/<par1-val>/<par2>/<par2-val>
...
/<component1>/<par1>/<par1-val>/<par2>/<par2-val>

/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32
/comment/<par1>/<par1-val>
/login/<par1>/<par1-val>/<par2>/<par2-val>
...
/<component1>/<par1>/<par1-val>/<par2>/<par2-val>
/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)

/article/id/32
/comment/<par1>/<par1-val>
/login/<par1>/<par1-val>/<par2>/<par2-val>
...
/<component1>/<par1>/<par1-val>/<par2>/<par2-val>
/<component2>/<par1>/<par1-val>

Cl
ie
nt
s

W
eb
se
rv
er

Millions of good HTTP messages

Modeling benign HTTP interactions

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

Models of good messages

M1 MnM2 M3

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

MnM1 M3M2

Example of models
— parameter string length
— numeric range
— probabilistic grammar of strings
— string character distribution

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

Models of good sessions

M1 MnM2 M3

C1

C3

C2
M1

C7 C1

C3
M2

C2
C10 C7

Mn

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

M1 MnM3M2

C1

C2

C3
M1

C7 C1

C3
M2

C2 C5
C10

C3

C7
Mn

C1

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

M1 MnM2 M3

C1

C2

C3
M1

C7 C1

C3
M2

C2 C5
C10

C3

C7
Mn

C1

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

Detection of bad messages

M1 MnM2 M3

Modeling benign HTTP interactions

Client

Webserver

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

/<component1>/<par1>/<par1-val>

Client

Webserver

Detection of bad sessions

C1

C2

C3
M1

C7 C1

C3
M2

C2 C5
C10

C3

C7
Mn

C1

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?

I site changes means changes in the good behavior,
I changes in the good behavior means obsolete training,
I obsolete training leads to FP.

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?

I site changes means changes in the good behavior,
I changes in the good behavior means obsolete training,
I obsolete training leads to FP.

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?
I site changes means changes in the good behavior,

I changes in the good behavior means obsolete training,
I obsolete training leads to FP.

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?
I site changes means changes in the good behavior,
I changes in the good behavior means obsolete training,

I obsolete training leads to FP.

What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?
I site changes means changes in the good behavior,
I changes in the good behavior means obsolete training,
I obsolete training leads to FP.

What type of changes are we concerned about?
Those that affect normality models.

I Request: e.g., new parameters, new domains for parameters,
L10N, I18N.

I Example (I18N): 3/12/2009 3:00 PM GMT-08, 3 May 2009
3:00, now.

I Affect: string length, char distribution, string grammar.
I Response: e.g., new DOM nodes, rearrangement of DOM

nodes.
I Example (AJAX): several nodes are enriched with client-side

code.
I Affect: any tree-based DOM normality models.

I Session: e.g., reordering of paths in a typical session,
add/rem. of authentication.

I Example (auth):
/site → /auth → /blog
/site → /auth → /files

/site → /files|/blog|/auth.
I Affect: sequence-based session models.

What type of changes are we concerned about?
Those that affect normality models.

I Request: e.g., new parameters, new domains for parameters,
L10N, I18N.

I Example (I18N): 3/12/2009 3:00 PM GMT-08, 3 May 2009
3:00, now.

I Affect: string length, char distribution, string grammar.

I Response: e.g., new DOM nodes, rearrangement of DOM
nodes.

I Example (AJAX): several nodes are enriched with client-side
code.

I Affect: any tree-based DOM normality models.
I Session: e.g., reordering of paths in a typical session,

add/rem. of authentication.
I Example (auth):

/site → /auth → /blog
/site → /auth → /files

/site → /files|/blog|/auth.
I Affect: sequence-based session models.

What type of changes are we concerned about?
Those that affect normality models.

I Request: e.g., new parameters, new domains for parameters,
L10N, I18N.

I Example (I18N): 3/12/2009 3:00 PM GMT-08, 3 May 2009
3:00, now.

I Affect: string length, char distribution, string grammar.

I Response: e.g., new DOM nodes, rearrangement of DOM
nodes.

I Example (AJAX): several nodes are enriched with client-side
code.

I Affect: any tree-based DOM normality models.

I Session: e.g., reordering of paths in a typical session,
add/rem. of authentication.

I Example (auth):
/site → /auth → /blog
/site → /auth → /files

/site → /files|/blog|/auth.
I Affect: sequence-based session models.

What type of changes are we concerned about?
Those that affect normality models.

I Request: e.g., new parameters, new domains for parameters,
L10N, I18N.

I Example (I18N): 3/12/2009 3:00 PM GMT-08, 3 May 2009
3:00, now.

I Affect: string length, char distribution, string grammar.
I Response: e.g., new DOM nodes, rearrangement of DOM

nodes.
I Example (AJAX): several nodes are enriched with client-side

code.
I Affect: any tree-based DOM normality models.

I Session: e.g., reordering of paths in a typical session,
add/rem. of authentication.

I Example (auth):
/site → /auth → /blog
/site → /auth → /files

/site → /files|/blog|/auth.
I Affect: sequence-based session models.

Is this really an issue?
Todays’ websites change pretty often.

Between Jan 29 and Apr 13, 2009, we crawled:
I 2,264 websites drawn from Alexa’s Top 500 and googling,
I 3,303,816 pages instances total,
I 1,390 snapshots for each website.

Is this really an issue?
Todays’ websites change pretty often.

Between Jan 29 and Apr 13, 2009, we crawled:
I 2,264 websites drawn from Alexa’s Top 500 and googling,
I 3,303,816 pages instances total,
I 1,390 snapshots for each website.

What type of, and how many, changes have we
found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

We also set up a third, white box analysis (omitted in this talk) of
source code, to confirm that web applications are subject to
substantial changes between releases.

What type of, and how many, changes have we
found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

We also set up a third, white box analysis (omitted in this talk) of
source code, to confirm that web applications are subject to
substantial changes between releases.

What type of, and how many, changes have we
found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

We also set up a third, white box analysis (omitted in this talk) of
source code, to confirm that web applications are subject to
substantial changes between releases.

What type of, and how many, changes have we
found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

We also set up a third, white box analysis (omitted in this talk) of
source code, to confirm that web applications are subject to
substantial changes between releases.

What type of, and how many, changes have we
found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

We also set up a third, white box analysis (omitted in this talk) of
source code, to confirm that web applications are subject to
substantial changes between releases.

What type of, and how many, changes have we
found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

We also set up a third, white box analysis (omitted in this talk) of
source code, to confirm that web applications are subject to
substantial changes between releases.

Effects on a web application anomaly detector?
We performed some tests using webanomaly

I Real-world training Q′ and testing datasets Q, Q ∩Q′ = ∅:
I 823 unique web applications,
I 36,392 unique resource paths,
I 16,671 unique parameters,
I 58,734,624 HTTP messages;
I 1000 real-world attacks.

I We drifted Q, obtaining a known Qdrift
I 6,749 new session flows,
I 6,750 new parameters,
I 5,785 modified parameters.

In this way, the set of changes in web application behavior was
explicitly known.

Effects on a web application anomaly detector?
We performed some tests using webanomaly

I Real-world training Q′ and testing datasets Q, Q ∩Q′ = ∅:
I 823 unique web applications,
I 36,392 unique resource paths,
I 16,671 unique parameters,
I 58,734,624 HTTP messages;
I 1000 real-world attacks.

I We drifted Q, obtaining a known Qdrift
I 6,749 new session flows,
I 6,750 new parameters,
I 5,785 modified parameters.

In this way, the set of changes in web application behavior was
explicitly known.

Effects on a web application anomaly detector?
We performed some tests using webanomaly

I Real-world training Q′ and testing datasets Q, Q ∩Q′ = ∅:
I 823 unique web applications,
I 36,392 unique resource paths,
I 16,671 unique parameters,
I 58,734,624 HTTP messages;
I 1000 real-world attacks.

I We drifted Q, obtaining a known Qdrift
I 6,749 new session flows,
I 6,750 new parameters,
I 5,785 modified parameters.

In this way, the set of changes in web application behavior was
explicitly known.

Details on how we built Qdrift

I New session flows
/login /index
/index /login
/article /article

I new parameters
/nav?id=21&mode=text /nav?pk=21&attr=text
/all?filter=2009 /all?filter=2009&pag=true
/get?id=21 /retrieve?id=21

I modified parameters
?date=1944-10-14 ?date=yesterday&fmt=smart

Details on how we built Qdrift

I New session flows
/login /index
/index /login
/article /article

I new parameters
/nav?id=21&mode=text /nav?pk=21&attr=text
/all?filter=2009 /all?filter=2009&pag=true
/get?id=21 /retrieve?id=21

I modified parameters
?date=1944-10-14 ?date=yesterday&fmt=smart

Details on how we built Qdrift

I New session flows
/login /index
/index /login
/article /article

I new parameters
/nav?id=21&mode=text /nav?pk=21&attr=text
/all?filter=2009 /all?filter=2009&pag=true
/get?id=21 /retrieve?id=21

I modified parameters
?date=1944-10-14 ?date=yesterday&fmt=smart

Details on how we built Qdrift

I New session flows
/login /index
/index /login
/article /article

I new parameters
/nav?id=21&mode=text /nav?pk=21&attr=text
/all?filter=2009 /all?filter=2009&pag=true
/get?id=21 /retrieve?id=21

I modified parameters
?date=1944-10-14 ?date=yesterday&fmt=smart

Effects on detection

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Detection accuracy (Q)
Detection accuracy (Qdrift)

HTTP responses contain good clues about changes!

I links → potential new resources and parameters,

I forms → potential new resources,

<form name="newform" target="/account/newhandler">
<!--fields-->

</form>

I fields → potential new parameters and also new values.

<input type="text" name="new_parameter" />
<select name="subject">

<option>General</option>
<option>User interface</option>
<option>Functionality</option>
<option>New value for ’subject’</option>

</select>

HTTP responses contain good clues about changes!
I links → potential new resources and parameters,

I forms → potential new resources,

<form name="newform" target="/account/newhandler">
<!--fields-->

</form>

I fields → potential new parameters and also new values.

<input type="text" name="new_parameter" />
<select name="subject">

<option>General</option>
<option>User interface</option>
<option>Functionality</option>
<option>New value for ’subject’</option>

</select>

HTTP responses contain good clues about changes!

I links → potential new resources and parameters,

I forms → potential new resources,

<form name="newform" target="/account/newhandler">
<!--fields-->

</form>

I fields → potential new parameters and also new values.

<input type="text" name="new_parameter" />
<select name="subject">

<option>General</option>
<option>User interface</option>
<option>Functionality</option>
<option>New value for ’subject’</option>

</select>

HTTP responses contain good clues about changes!

I links → potential new resources and parameters,

I forms → potential new resources,

<form name="newform" target="/account/newhandler">
<!--fields-->

</form>

I fields → potential new parameters and also new values.

<input type="text" name="new_parameter" />
<select name="subject">

<option>General</option>
<option>User interface</option>
<option>Functionality</option>
<option>New value for ’subject’</option>

</select>

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi

intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi

intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi

intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi
intercept the corresponding response respi

extract parmeters and values from links, forms, fields
at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi
intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi
intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1

compare parameter and values to spot legit changes

Parsing HTTP responses to update models

Client Anomaly detector Web app.

qi

Parsing

Li ,Fi

Change or attack?

qi

respirespi

qi+1 qi+1

for each request qi
intercept the corresponding response respi
extract parmeters and values from links, forms, fields

at next request qi+1
compare parameter and values to spot legit changes

Example
qi = GET /page?id=14

respi =

<form name="newform" target="/account/
newhandler">

<input type="text" name="new_parameter" />
<select name="subject">

<option>General</option>
<option>User interface</option>
<option>Functionality</option>
<option>New value for ’subject’</option>

</select>
</form>

qi+1 = GET /account/newhandler?new_parameter=1
would rise a false positive.

Example
qi = GET /page?id=14
respi =

<form name="newform" target="/account/
newhandler">

<input type="text" name="new_parameter" />
<select name="subject">

<option>General</option>
<option>User interface</option>
<option>Functionality</option>
<option>New value for ’subject’</option>

</select>
</form>

qi+1 = GET /account/newhandler?new_parameter=1
would rise a false positive.

Example
qi = GET /page?id=14
respi =

<form name="newform" target="/account/
newhandler">

<input type="text" name="new_parameter" />
<select name="subject">

<option>General</option>
<option>User interface</option>
<option>Functionality</option>
<option>New value for ’subject’</option>

</select>
</form>

qi+1 = GET /account/newhandler?new_parameter=1
would rise a false positive.

How do we eliminate false positives?

I new parameters: we create a new model and we train it on
values, if any.

I new session flows: we just reorder the session sequence.
I new values: we can guess the type (e.g., string, token). If not

available, we trust the requests that follows.

How do we eliminate false positives?

I new parameters: we create a new model and we train it on
values, if any.

I new session flows: we just reorder the session sequence.

I new values: we can guess the type (e.g., string, token). If not
available, we trust the requests that follows.

How do we eliminate false positives?

I new parameters: we create a new model and we train it on
values, if any.

I new session flows: we just reorder the session sequence.

I new values: we can guess the type (e.g., string, token). If not
available, we trust the requests that follows.

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%

New parameters 6,750 0 100.0%
Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%

Total 19,284 4,821 75.0%

Does it work?
Results on Qdrift

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Detection accuracy (Q)
Detection accuracy (Qdrift)

Does it work?
Results on Qdrift

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Detection accuracy (Q)
Detection accuracy (Qdrift)

Assumptions, limitations and risks

I Assumptions
I can detect those changes that can be “guessed” from the

responses
I Limitations

I modifications of existing parameters are only partially
detectable,

I JavaScript and rich client-side code is not analyzed, yet, but
we believe they contain lots of insights!

I Risks
I it trusts the application as an oracle,
I however, if somebody has already compromised it, we have

another problem :)
I right after a change occurs, the very first response is critical,
I if somebody manages to tamper with that, models are

poisoned

Assumptions, limitations and risks

I Assumptions
I can detect those changes that can be “guessed” from the

responses

I Limitations
I modifications of existing parameters are only partially

detectable,
I JavaScript and rich client-side code is not analyzed, yet, but

we believe they contain lots of insights!
I Risks

I it trusts the application as an oracle,
I however, if somebody has already compromised it, we have

another problem :)
I right after a change occurs, the very first response is critical,
I if somebody manages to tamper with that, models are

poisoned

Assumptions, limitations and risks

I Assumptions
I can detect those changes that can be “guessed” from the

responses

I Limitations
I modifications of existing parameters are only partially

detectable,
I JavaScript and rich client-side code is not analyzed, yet, but

we believe they contain lots of insights!

I Risks
I it trusts the application as an oracle,
I however, if somebody has already compromised it, we have

another problem :)
I right after a change occurs, the very first response is critical,
I if somebody manages to tamper with that, models are

poisoned

Assumptions, limitations and risks

I Assumptions
I can detect those changes that can be “guessed” from the

responses
I Limitations

I modifications of existing parameters are only partially
detectable,

I JavaScript and rich client-side code is not analyzed, yet, but
we believe they contain lots of insights!

I Risks
I it trusts the application as an oracle,
I however, if somebody has already compromised it, we have

another problem :)
I right after a change occurs, the very first response is critical,
I if somebody manages to tamper with that, models are

poisoned

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:

I risk mitigation: update a model only when a change in the
corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;

I balance between:
I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:

I risk mitigation: update a model only when a change in the
corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:

I risk mitigation: update a model only when a change in the
corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:

I risk mitigation: update a model only when a change in the
corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:
I risk mitigation: update a model only when a change in the

corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!

Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:
I risk mitigation: update a model only when a change in the

corresponding response is observed at least k times;
I client-side code inspection: todays’ JavaScript libraries perform

several task related to paramters and dynamic DOM
construction!

Questions?

