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Adapting to changes of the protected web application.



Web Application Anomaly Detection
Learning benign HTTP interactions (i.e., requests and responses)
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Example of models
— parameter string length
— numeric range
— probabilistic grammar of strings
— string character distribution
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What if the modeled features change?
Note that this is the common problem of anomaly detection, per sé

In practice, what if the protected website suddenly changes?

I site changes means changes in the good behavior,
I changes in the good behavior means obsolete training,
I obsolete training leads to FP.
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What type of changes are we concerned about?
Those that affect normality models.

I Request: e.g., new parameters, new domains for parameters,
L10N, I18N.

I Example (I18N): 3/12/2009 3:00 PM GMT-08, 3 May 2009
3:00, now.

I Affect: string length, char distribution, string grammar.
I Response: e.g., new DOM nodes, rearrangement of DOM

nodes.
I Example (AJAX): several nodes are enriched with client-side

code.
I Affect: any tree-based DOM normality models.

I Session: e.g., reordering of paths in a typical session,
add/rem. of authentication.

I Example (auth):
/site → /auth → /blog
/site → /auth → /files

/site → /files|/blog|/auth.
I Affect: sequence-based session models.
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Is this really an issue?
Todays’ websites change pretty often.

Between Jan 29 and Apr 13, 2009, we crawled:
I 2,264 websites drawn from Alexa’s Top 500 and googling,
I 3,303,816 pages instances total,
I 1,390 snapshots for each website.
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What type of, and how many, changes have we
found?

I YouTube (dramatic change)
I richer interaction to let user rearrange widgets,
I this meant lots of new parameters,
I lots of req/res/ses changes.

I Yahoo! Mail
I new parameter for enhaced and localized search,
I new valid values for parameters,
I not many response changes,

I MySpace
I unfortunately, we found this didn’t change too much.

I All:
I 40% have new resource paths,
I 30% have new parameters.

We also set up a third, white box analysis (omitted in this talk) of
source code, to confirm that web applications are subject to
substantial changes between releases.
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Effects on a web application anomaly detector?
We performed some tests using webanomaly

I Real-world training Q′ and testing datasets Q, Q ∩Q′ = ∅:
I 823 unique web applications,
I 36,392 unique resource paths,
I 16,671 unique parameters,
I 58,734,624 HTTP messages;
I 1000 real-world attacks.

I We drifted Q, obtaining a known Qdrift
I 6,749 new session flows,
I 6,750 new parameters,
I 5,785 modified parameters.

In this way, the set of changes in web application behavior was
explicitly known.
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Details on how we built Qdrift

I New session flows
/login /index
/index /login
/article /article

I new parameters
/nav?id=21&mode=text /nav?pk=21&attr=text
/all?filter=2009 /all?filter=2009&pag=true
/get?id=21 /retrieve?id=21

I modified parameters
?date=1944-10-14 ?date=yesterday&fmt=smart
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HTTP responses contain good clues about changes!

I links → potential new resources and parameters,

<a href="/account/retrieve?id=22&type=ext" />
<a href="/account/history?aid=446825759916" />

I forms → potential new resources,

<form name="newform" target="/account/newhandler">
<!--fields-->

</form>

I fields → potential new parameters and also new values.

<input type="text" name="new_parameter" />
<select name="subject">

<option>General</option>
<option>User interface</option>
<option>Functionality</option>
<option>New value for ’subject’</option>

</select>
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Parsing HTTP responses to update models

Client Anomaly detector Web app.
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Example
qi = GET /page?id=14

respi =

<a href="/comments/retrieve?id=22&type=ext" />
<a href="/archive/yearly?y=2008" />

<form name="newform" target="/account/
newhandler">

<input type="text" name="new_parameter" />
<select name="subject">

<option>General</option>
<option>User interface</option>
<option>Functionality</option>
<option>New value for ’subject’</option>

</select>
</form>

qi+1 = GET /account/newhandler?new_parameter=1
would rise a false positive.
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How do we eliminate false positives?

I new parameters: we create a new model and we train it on
values, if any.

I new session flows: we just reorder the session sequence.
I new values: we can guess the type (e.g., string, token). If not

available, we trust the requests that follows.
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Does it work?
Results on Qdrift

Change type Anomalies False Positives Reduction

New session flows 6,749 0 100.0%
New parameters 6,750 0 100.0%

Modified parameters 5,785 4,821 16.6%
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Assumptions, limitations and risks

I Assumptions
I can detect those changes that can be “guessed” from the

responses
I Limitations

I modifications of existing parameters are only partially
detectable,

I JavaScript and rich client-side code is not analyzed, yet, but
we believe they contain lots of insights!

I Risks
I it trusts the application as an oracle,
I however, if somebody has already compromised it, we have

another problem :)
I right after a change occurs, the very first response is critical,
I if somebody manages to tamper with that, models are

poisoned
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Conclusions

I very simple and effective at reducing FP due to changes;
I balance between:

I exposure to model poisoning,
I cost of false positives,
I cost/feasibility of manual retraining;

I future extensions:

I risk mitigation: update a model only when a change in the
corresponding response is observed at least k times;

I client-side code inspection: todays’ JavaScript libraries perform
several task related to paramters and dynamic DOM
construction!
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Questions?


